A fatigue assessment technique for modular and pre-stressed orthopaedic implants.

نویسندگان

  • A S Dickinson
  • M Browne
  • A C Roques
  • A C Taylor
چکیده

Orthopaedic implants experience large cyclic loads, and pre-clinical analysis is conducted to ensure they can withstand millions of loading cycles. Acetabular cup developments aim to reduce wall thickness to conserve bone, and this produces high pre-stress in modular implants. As part of an implant development process, we propose a technique for preclinical fatigue strength assessment of modular implants which accounts for this mean stress, stress concentrating features and material processing. A modular cup's stress distributions were predicted computationally, under assembly and in vivo loads, and its cyclic residual stress and stress amplitude were calculated. For verification against damage initiation in low-cycle-fatigue (LCF), the peak stress was compared to the material's yield strength. For verification against failure in high-cycle-fatigue (HCF) each element's reserve factor was calculated using the conservative Soderberg infinite life criterion. Results demonstrated the importance of accounting for mean stress. The cup was predicted to experience high cyclic mean stress with low magnitude stress amplitude: a low cyclic load ratio (Rl=0.1) produced a high cyclic stress ratio (Rs=0.80). Furthermore the locations of highest cyclic mean stress and stress amplitude did not coincide. The minimum predicted reserve factor Nf was 1.96 (HCF) and 2.08 (LCF). If mean stress were neglected or if the stress ratio were assumed to equal the load ratio, the reserve factor would be considerably lower, potentially leading to over-engineering, reducing bone conservation. Fatigue strength evaluation is only one step in a broader development process, which should involve a series of verifications with the full range of normal and traumatic physiological loading scenarios, with representative boundary conditions and a representative environment. This study presents and justifies a fatigue analysis methodology which could be applied in early stage development to a variety of modular and pre-stressed prosthesis concepts, and is particularly relevant as implant development aims to maximise modularity and bone conservation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modularity of the femoral component in total hip arthroplasty.

Modular femoral components have been developed to aid in recreating native femoral version, limb length, and offset in total hip arthroplasty. Use of modular implants results in cost savings, as well. Inventory can be reduced while allowing intraoperative flexibility and options. With modular implants, the femoral prosthesis can be built in situ, which is helpful in minimizing incision length a...

متن کامل

Revision of Anatomic Total Shoulder Arthroplasty to Hemiarthroplasty: Does it work?

Background: The projected increase in revision shoulder arthroplasty has increased interest in the outcomes of theseprocedures. Glenoid component removal and conversion to a hemiarthroplasty (HA) is an option for aseptic glenoidloosening after anatomic total shoulder arthroplasty (aTSA).Methods: We identified patients who had undergone revision shoulder arthroplasty over a 15-...

متن کامل

Effect of Coating Materials on the Fatigue Behavior of Hip Implants: A Three-dimensional Finite Element Analysis

This study aims to validate, using finite element analysis (FEA), the design concept by comparing the fatigue behavior of hip implant stems coated with composite (carbon/PEEK) and polymeric (PEEK) coating materials corresponding to different human activities: standing up, normal walking and climbing stairs under dynamic loadings to find out which of all these models have a better performance in...

متن کامل

Life expectancy of modular Ti6Al4V hip implants: influence of stress and environment.

Stress dependent electrochemical dissolution is identified as one of the key mechanisms governing surface degradation in fretting and crevice corrosion of biomedical implants. The present study focuses on delineating the roles of mechanical stress and chemical conditions on the life expectancy of modular hip implants. First, material removal on a stressed surface of Ti6Al4V subjected to single ...

متن کامل

Failure of Emperion modular femoral stem with implant analysis

Modularity in total hip arthroplasty provides multiple benefits to the surgeon in restoring the appropriate alignment and position to a previously damaged hip joint. The vast majority of modern implants incorporate modularity into their design with some implants having multiple modular interfaces. There is the potential for failure at modular junctions because of fretting and crevice corrosion ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical engineering & physics

دوره 36 1  شماره 

صفحات  -

تاریخ انتشار 2014